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Organisms use a variety of environmental cues to orient their movements

in three-dimensional space. Here, we show that the upward movement of

young Chinook salmon (Oncorhynchus tshawytscha) emerging from gravel

nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic

field travelled farther upwards through substrate than did fish tested in a field

with the vertical component inverted. This suggests that the magnetic field is

one of several factors that influences emergence from the gravel, possibly by

serving as an orientation cue that helps fish determine which way is up. More-

over, our work indicates that the Oncorhynchus species are sensitive to the

magnetic field throughout their life cycles, and that it guides their movements

across a range of spatial scales and habitats.
1. Introduction
The geomagnetic field has been a ubiquitous feature of Earth since life evolved [1]

and organisms ranging from bacteria to mammals use it to orient [2]. Animals can

use the geomagnetic field as a ‘compass’ to set and maintain a heading, as a ‘map’

to assess location, or both [2,3]. In addition to facilitating orientation in the hori-

zontal plane, the geomagnetic field has also been implicated in some vertical

movements. For example, certain anaerobic bacteria swim along magnetic field

lines to move downward into mud where oxygen is lower [4], and nematode

worms (Caenorhabditis elegans) exploit magnetic information to guide upwards

and downwards movements [5]. Similar tendencies might be adaptive for

many species that undertake vertical movements in environments where sources

of directional information are limited. Here, we examine the influence of the

magnetic field on vertical movements of young Chinook salmon (Oncorhynchus
tshawytscha) emerging from gravel nests.

Adult female salmonid fishes bury their eggs after fertilization within gravel

beds in streams and lake habitats [6–9]. After hatching, the embryos (termed

alevins) initially move downward in the gravel and develop there [6,7]. When

their residual yolk stores become depleted, the young fish migrate upwards,

emerge from the gravel and subsequently live above the substrate [10–12]. The

process of emergence from the gravel appears to be influenced by many factors.

As yolk is reduced and the digestive tract develops, there is a period when the fish

can emerge if environmental conditions (e.g. low oxygen) stress them, so some
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Figure 1. Mean height of fish movement ( y-axis) under different magnetic
conditions. Error bars indicate the 95% confidence interval of the mean.
Significant differences between treatments are indicated by an asterisk
(Mann – Whitney U-test, U ¼ 29871, p ¼ 0.0036). Beneath the graph is a
schematic of the magnetic conditions experienced by fish. The geomagnetic
vector is shown by a black arrow; the horizontal and vertical components of
the field are grey dashed arrows (arrow thickness shows relative intensity).
Magnetic north is designated by ‘mN’. The gravity vector is shown as a
white arrow, ‘g’.
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young salmon emerge with yolk showing [8]. Pre-emergent

salmon move towards areas with higher dissolved oxygen;

they also orient to water flow and avoid light [6–8,10–12].

While in the gravel, the alevins may move little, or quite a lot

[6,8,11]. Prior to emergence, negative phototaxis helps them

remain in the gravel. As the time to emerge approaches, they

become more tolerant of light, though they tend to emerge

from gravel at night [7,8]. In the absence of light and water cur-

rents, fish still move upwards and out of the substrate, but the

basis of this orientation has not been determined [7,11,12].

One possibility is that fish moving vertically out of gravel

nests derive some directional information from Earth’s mag-

netic field. In principle, swimming against field lines in the

northern hemisphere would lead fish out of the gravel and

into the water column, whereas swimming with field lines

would lead them deeper into the substrate (figure 1). To inves-

tigate this hypothesis, fish were placed at the bottom of tubes

filled with glass marbles and exposed to one of three con-

ditions: (i) the ambient magnetic field (field lines directed

downwards), to provide a baseline of salmon movement,

(ii) an ‘intensified’ magnetic field (field lines directed down-

wards), to serve as a control for a sudden change in

electromagnetic conditions, and (iii) an ‘inverted vertical’

field (field lines directed upwards) to test whether reversing
the vertical component of the magnetic field alters the

upward movement of fish (figure 1). If fish use the direction

of magnetic field lines to orient their vertical movement,

we predicted that those in the inverted vertical field would

not swim as far up the tube as those in the ambient field,

but there would be no difference between the ambient and

intensified fields.
2. Material and methods
Experiments were performed from 29 March through 1 April 2016

at the Oregon Hatchery Research Center (44.408 N, 123.758 W)

using Chinook salmon from Oregon, USA. The fish were incubated

in fibreglass hatching trays. After absorption of the yolk sac, they

were moved into a shallow trough (table 1). Testing occurred

after full yolk absorption, prior to first exogenous feeding.

The testing apparatus consisted of a clear aquarium (51.4 cm �
26.7 cm � 31.8 cm) containing 27 wells (height¼ 3.8 cm,

diameter ¼ 3.8 cm) constructed from clear, plastic fluorescent

light bulb covers glued to the surface of mesh matting. Tubes of

the same material were cut to 22.9 cm in length and fit into the

wells vertically. Clear glass marbles (1.9 cm in diameter) were

used to simulate gravel. Each tube and well were filled with

marbles to a height of 20.3 cm. The aquarium was placed within

a coil system consisting of four square coils (each 100 cm on a

side) constructed in accordance with Merritt et al. [13] and

arranged so that the magnetic field produced by the coil could

be directed up or down. Wires from the coil were attached to a

DC power supply so that current through the wires could be

varied, allowing control of the vertical component of the magnetic

field. The entire apparatus was draped in black plastic to minimize

light exposure. For each trial, tanks were filled with water from

nearby Fall Creek until each well was half-full. While in the

ambient magnetic field, one fish was placed in each well and a

marble-filled tube was fit over the well. After fish were in place,

tanks were filled with water up to the 22.9 cm marks on the

tubes (electronic supplementary material, figures S1–S3).

Fish were then exposed to one of three treatments: (i) the

ambient field, (ii) an intensified field or (iii) a field with the

vertical component inverted (table 1). After 30 min, an observer

entered the enclosure and recorded the vertical position of

each fish, using marks on the outside of the tubes (2.5 cm spa-

cing) to score the position (electronic supplementary material,

figure S3). Each fish was tested once. The tanks were drained

and refilled for subsequent trials. Tests were conducted between

04:30 and 12:00 h, alternating the three treatments to control

for diurnal effects on motivation to swim upwards. Non-

parametric tests were used to determine if there was a significant

difference ( p , 0.05) in the height fish moved among and

between treatments.
3. Results
The mean height fish moved upwards in the ambient field was

7.5 cm (95% confidence interval+0.78 cm, n ¼ 267). Those in

the intensified field moved up 6.7 cm (95% confidence

interval+0.74 cm, n ¼ 267). Fish in the inverted vertical

field moved up 5.8 cm (95% confidence interval+0.69 cm,

n ¼ 263). A difference in upwards movement existed among

the three treatments (Kruskal–Wallis test H ¼ 8.58, p ¼ 0.014,

d.f. ¼ 2). In pairwise tests, a difference in movement was

detected between the ambient and inverted vertical fields

(Mann–Whitney U-test, U ¼ 29871, p ¼ 0.0036, d.f. ¼ 1).

No difference in movement was detected between the ambient



Table 1. Magnetic conditions experienced by young Chinook salmon. Field values represent measurements made using a tri-axial magnetometer (Applied
Physics, 520A) within rearing areas and experimental treatments. Values indicate the mean (and range) of fields that the group of fish experienced, not
necessarily each individual.

location inclination angle (88888) total field intensity (mT) electrical current (Amp)

hatching trays þ658 (þ63 to þ678) 50.6 (49.3 – 52.1) NA

rearing trough þ658 (þ64 to þ668) 49.7 (49.4 – 50.0) NA

ambient experimental treatment þ688 (þ64 to þ718) 49.9 (49.4 – 50.5) 0

intensified experimental treatment þ828 (þ82 to þ838) 138.8 (135.4 – 141.3) þ1.98

inverted vertical experimental treatment 2688 (266 to 2718) 49.8 (49.3 – 50.1) 21.98
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and intensified fields (Mann–Whitney U-test, U ¼ 33022, p ¼
0.1615, d.f. ¼ 1) (figure 1).
0170752
4. Discussion
The results demonstrate that Chinook salmon are sensitive to

the magnetic field during their emergence from gravel. Fish in

a magnetic field with an inverted vertical component did not

move as far upwards as fish tested in the ambient field. By con-

trast, exposure to an intensified downward magnetic field had

no detectable effect on this behaviour (figure 1). Thus, inverting

the vertical component of the field affected the upward move-

ment of alevins, consistent with the hypothesis that salmon

use the direction of field lines to orient vertically.

Nonetheless, fish moved upwards in all treatments, includ-

ing the ‘inverted vertical’ field. Several factors may explain this

occurrence. Like orientation in the horizontal plane [2,3], mag-

netic information is likely one of several complementary or

redundant sensory inputs used to direct vertical movement.

In this experiment, other potential cues for guiding upward

movement remained available (e.g. the direction of the gravity

vector and, perhaps, gradients in odours associated with the

surface). Second, by placing fish at the bottom of the plastic

tubes, downward movement could not occur, and even

random activity (e.g. equal amounts of downward and

upward orientation) presumably resulted in net upward move-

ment. Third, it is possible that rather than using the magnetic

field as an orientation cue, fish were startled by a sudden

change in the magnetic field, causing them to move less—

and this effect was less pronounced in a stronger magnetic

intensity than when the vertical component of the field was

inverted.
Irrespective of these considerations, our work indicates

that the Oncorhynchus species uses Earth’s magnetic field

throughout their life cycles, across a wide range of spatial

scales, and for a variety of navigational tasks [14–18]. Interest-

ingly, the magnetic field is one of the few common features

shared across the diverse and expansive environments that

salmon and trout occupy (gravel beds, streams, lakes, rivers,

estuaries, coastal waters and the open sea) and may, therefore,

be particularly useful as a spatial reference system. Finally,

our study contributes to the growing literature that suggests

vertical movements of burrowing, flying and swimming

organisms are influenced by magnetic cues [4,5,19,20]. Further

exploration of organisms’ use of the magnetic field to orient in

three-dimensional space is warranted.
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